Lamprey Dlx genes and early vertebrate evolution.
نویسندگان
چکیده
Gnathostome vertebrates have multiple members of the Dlx family of transcription factors that are expressed during the development of several tissues considered to be vertebrate synapomorphies, including the forebrain, cranial neural crest, placodes, and pharyngeal arches. The Dlx gene family thus presents an ideal system in which to examine the relationship between gene duplication and morphological innovation during vertebrate evolution. Toward this end, we have cloned Dlx genes from the lamprey Petromyzon marinus, an agnathan vertebrate that occupies a critical phylogenetic position between cephalochordates and gnathostomes. We have identified four Dlx genes in P. marinus, whose orthology with gnathostome Dlx genes provides a model for how this gene family evolved in the vertebrate lineage. Differential expression of these lamprey Dlx genes in the forebrain, cranial neural crest, pharyngeal arches, and sensory placodes of lamprey embryos provides insight into the developmental evolution of these structures as well as a model of regulatory evolution after Dlx gene duplication events.
منابع مشابه
Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates.
In jawed vertebrates, the Dlx code, or nested expression patterns of Dlx genes, specify the dorsoventral polarity of pharyngeal arches, downstream of endothelin-1 (Edn-1) and its effectors, Bapx1 (Nkx3.2) and dHand (Hand2). To elucidate the evolution of the specification mechanism of the oropharyngeal skeletal system, lamprey homologs of Dlx, Edn, endothelin receptor (Ednr), Bapx1, and dHand we...
متن کاملEvidence for the prepattern/cooption model of vertebrate jaw evolution.
The appearance of jaws was a turning point in vertebrate evolution because it allowed primitive vertebrates to capture and process large, motile prey. The vertebrate jaw consists of separate dorsal and ventral skeletal elements connected by a joint. How this structure evolved from the unjointed gill bar of a jawless ancestor is an unresolved question in vertebrate evolution. To understand the d...
متن کاملWnt gene expression during appendage development of the sepiolid squid Euprymna scolopes
their downstream targets in the lamprey head. In jawed vertebrates, Edn signaling patterns the pharyngeal skeleton and positions the jaw joint through the action of target genes such as Hand, Bapx, Chordin, Gdf5, Gsc, Dlx, and Barx. We find gnathostome-like expression of Edns and most Edn target genes in the lamprey head, indicating that Ednmediated pharyngeal skeleton patterning predates the e...
متن کاملAmphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns.
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the verteb...
متن کاملEarly evolution of multifocal optics for well-focused colour vision in vertebrates.
Jawless fishes (Agnatha; lampreys and hagfishes) most closely resemble the earliest stage in vertebrate evolution and lamprey-like animals already existed in the Lower Cambrian [about 540 million years ago (MYA)]. Agnathans are thought to have separated from the main vertebrate lineage at least 500 MYA. Hagfishes have primitive eyes, but the eyes of adult lampreys are well-developed. The southe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2001